Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
Nano Converg ; 11(1): 16, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722453

ABSTRACT

Thin-film optical diodes are important elements for miniaturizing photonic systems. However, the design of optical diodes relies on empirical and heuristic approaches. This poses a significant challenge for identifying optimal structural models of optical diodes at given wavelengths. Here, we leverage a quantum annealing-enhanced active learning scheme to automatically identify optimal designs of 130 nm-thick optical diodes. An optical diode is a stratified volume diffractive film discretized into rectangular pixels, where each pixel is assigned to either a metal or dielectric. The proposed scheme identifies the optimal material states of each pixel, maximizing the quality of optical isolation at given wavelengths. Consequently, we successfully identify optimal structures at three specific wavelengths (600, 800, and 1000 nm). In the best-case scenario, when the forward transmissivity is 85%, the backward transmissivity is 0.1%. Electromagnetic field profiles reveal that the designed diode strongly supports surface plasmons coupled across counterintuitive metal-dielectric pixel arrays. Thereby, it yields the transmission of first-order diffracted light with a high amplitude. In contrast, backward transmission has decoupled surface plasmons that redirect Poynting vectors back to the incident medium, resulting in near attenuation of its transmission. In addition, we experimentally verify the optical isolation function of the optical diode.

2.
Curr Issues Mol Biol ; 46(3): 2444-2455, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534770

ABSTRACT

Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs.

3.
Hortic Res ; 11(2): uhad291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371631

ABSTRACT

Numerous studies have been dedicated to genetically engineering crops to enhance their yield and quality. One of the key requirements for generating genetically modified plants is the reprogramming of cell fate. However, the efficiency of shoot regeneration during this process is highly dependent on genotypes, and the underlying molecular mechanisms remain poorly understood. Here, we identified microRNA396 (miR396) as a negative regulator of shoot regeneration in tomato. By selecting two genotypes with contrasting shoot regeneration efficiencies and analyzing their transcriptome profiles, we found that miR396 and its target transcripts, which encode GROWTH-REGULATING FACTORs (GRFs), exhibit differential abundance between high- and low-efficiency genotypes. Suppression of miR396 functions significantly improved shoot regeneration rates along with increased expression of GRFs in transformed T0 explants, suggesting that miR396 is a key molecule involved in the determination of regeneration efficiency. Notably, we also showed that co-expression of a miR396 suppressor with the gene-editing tool can be employed to generate gene-edited plants in the genotype with a low capacity for shoot regeneration. Our findings show the critical role of miR396 as a molecular barrier to shoot regeneration in tomato and suggest that regeneration efficiency can be improved by blocking this single microRNA.

4.
Ann Dermatol ; 36(1): 18-28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38325430

ABSTRACT

BACKGROUND: Actinidia polygama (silver vine) has been used in oriental medicine to treat gout, rheumatoid arthritis, and inflammation. Actinidia polygama water extract (APWE) is named PB203. OBJECTIVE: To investigate whether PB203 has anti-photoaging effects and to understand the molecular mechanism underlying such effects. METHODS: The antioxidant effect was assessed by 1,1-diphenyl-2-picrylhydrazyl assay and 2',7'-dichlorodihydrofluorescein diacetate staining in ultraviolet B (UVB)-irradiated HaCaT cells with or without PB203 treatment. Type I collagen, matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP-1), hyaluronic acid (HA), hyaluronan synthase 1 (HAS1) and HAS2 levels were measuring by enzyme-linked immunosorbent assay or reverse transcription quantitative polymerase chain reaction. Also, we investigate the effects of PB203 on wrinkle formation, and the potential mechanisms underlying such effects were investigated in UVB-induced wrinkle mouse model mice. RESULTS: PB203 alleviated the UVB-induced reactive oxygen species production, phosphorylation of JNK, ERK, and p38, and formation of AP-1. In addition, PB203 inhibited the decreases in type I collagen and TIMP-1 levels, and the increase in MMP-1 levels in UVB-exposed HaCaT cells. In UVB-induced wrinkle mouse model, PB203 inhibited the decreases in elastin and type I collagen levels as well as the increases in MMP-1 expression, wrinkle formation, and skin dehydration. Furthermore, PB203 increased the expression of filaggrin, HAS1, and HAS2, improving the skin barrier function. CONCLUSION: Taken together, we found that PB203 is as a potent candidate to serve as a functional ingredient or therapeutic agent to improve UVB-mediated skin aging.

5.
Article in English | MEDLINE | ID: mdl-38291762

ABSTRACT

Purpose: Patients with juvenile-onset systemic lupus erythematosus (JSLE) are at a high risk of entering adulthood with disease-related morbidities such as reduced bone mass and osteoporosis. This study aimed to evaluate the clinical characteristics of JSLE and to analyze the factors associated with low bone mineral density (BMD) in these patients. Methods: Children and adolescents diagnosed with JSLE at a single hospital in Korea were included. Demographic, clinical, and laboratory data and use of glucocorticoids and disease-modifying anti-rheumatic drugs were collected. Lumbar spine BMD Z-score was measured using dual energy x-ray absorptiometry, and lumbar spine radiographic data were collected. Results: A total of 29 patients with JSLE were included in this study. Of these patients, seven had a lumbar spine Z-score of -2.0 or lower and were designated as the low BMD group. The differences in the clinical parameters and treatment variables between the low BMD and non-low BMD groups were compared. Higher cumulative glucocorticoid dose, longer glucocorticoid exposure, and higher cumulative hydroxychloroquine dose were associated with low BMD; the main factor was the duration of exposure. There was no significant correlation between BMD and clinical profile, SLE disease activity, or bone metabolism markers. Conclusion: The duration of glucocorticoid exposure, cumulative glucocorticoid dose, and cumulative hydroxychloroquine dose were risk factors for low BMD in patients with JSLE, with the main factor being duration of glucocorticoid exposure. Thus, patients with JSLE should be routinely monitored for low BMD and potential fracture risks, and glucocorticoid-sparing treatment regimens should be considered.

6.
J Hepatol ; 80(1): 20-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37734683

ABSTRACT

BACKGROUND & AIMS: Recent studies reported that moderate HBV DNA levels are significantly associated with hepatocellular carcinoma (HCC) risk in hepatitis B e antigen (HBeAg)-positive, non-cirrhotic patients with chronic hepatitis B (CHB). We aimed to develop and validate a new risk score to predict HCC development using baseline moderate HBV DNA levels in patients entering into HBeAg-positive CHB from chronic infection. METHODS: This multicenter cohort study recruited 3,585 HBeAg-positive, non-cirrhotic patients who started antiviral treatment with entecavir or tenofovir disoproxil fumarate at phase change into CHB from chronic infection in 23 tertiary university-affiliated hospitals of South Korea (2012-2020). A new HCC risk score (PAGED-B) was developed (training cohort, n = 2,367) based on multivariable Cox models. Internal validation using bootstrap sampling and external validation (validation cohort, n = 1,218) were performed. RESULTS: Sixty (1.7%) patients developed HCC (median follow-up, 5.4 years). In the training cohort, age, gender, platelets, diabetes and moderate HBV DNA levels (5.00-7.99 log10 IU/ml) were independently associated with HCC development; the PAGED-B score (based on these five predictors) showed a time-dependent AUROC of 0.81 for the prediction of HCC development at 5 years. In the validation cohort, the AUROC of PAGED-B was 0.85, significantly higher than for other risk scores (PAGE-B, mPAGE-B, CAMD, and REAL-B). When stratified by the PAGED-B score, the HCC risk was significantly higher in high-risk patients than in low-risk patients (sub-distribution hazard ratio = 8.43 in the training and 11.59 in the validation cohorts, all p <0.001). CONCLUSIONS: The newly established PAGED-B score may enable risk stratification for HCC at the time of transition into HBeAg-positive CHB. IMPACT AND IMPLICATIONS: In this study, we developed and validated a new risk score to predict hepatocellular carcinoma (HCC) development in patients entering into hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) from chronic infection. The newly established PAGED-B score, which included baseline moderate HBV DNA levels (5-8 log10 IU/ml), improved on the predictive performance of prior risk scores. Based on a patient's age, gender, diabetic status, platelet count, and moderate DNA levels (5-8 log10 IU/ml) at the phase change into CHB from chronic infection, the PAGED-B score represents a reliable and easily available risk score to predict HCC development during the first 5 years of antiviral treatment in HBeAg-positive patients entering into CHB. With a scoring range from 0 to 12 points, the PAGED-B score significantly differentiated the 5-year HCC risk: low <7 points and high ≥7 points.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Child, Preschool , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/chemically induced , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Hepatitis B e Antigens , DNA, Viral , Liver Neoplasms/etiology , Liver Neoplasms/chemically induced , Cohort Studies , Persistent Infection , Antiviral Agents/therapeutic use , Risk Factors , Hepatitis B virus/genetics
7.
Aging Cell ; 23(3): e14061, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105557

ABSTRACT

Once tooth development is complete, odontoblasts and their progenitor cells in the dental pulp play a major role in protecting tooth vitality from external stresses. Hence, understanding the homeostasis of the mature pulp populations is just as crucial as understanding that of the young, developing ones for managing age-related dentinal damage. Here, it is shown that loss of Cpne7 accelerates cellular senescence in odontoblasts due to oxidative stress and DNA damage accumulation. Thus, in Cpne7-null dental pulp, odontoblast survival is impaired, and aberrant dentin is extensively formed. Intraperitoneal or topical application of CPNE7-derived functional peptide, however, alleviates the DNA damage accumulation and rescues the pathologic dentin phenotype. Notably, a healthy dentin-pulp complex lined with metabolically active odontoblasts is observed in 23-month-old Cpne7-overexpressing transgenic mice. Furthermore, physiologic dentin was regenerated in artificial dentinal defects of Cpne7-overexpressing transgenic mice. Taken together, Cpne7 is indispensable for the maintenance and homeostasis of odontoblasts, while promoting odontoblastic differentiation of the progenitor cells. This research thereby introduces its potential in oral disease-targeted applications, especially age-related dental diseases involving dentinal loss.


Subject(s)
Aging, Premature , Mice , Animals , Dental Pulp , Cellular Senescence/genetics , Odontoblasts , Cell Differentiation/genetics , Mice, Transgenic
8.
Dev Reprod ; 27(3): 101-115, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38074462

ABSTRACT

Environmental factors impact oyster growth, condition, and gonadal development, which is linked to gamete characteristics observed through histology. The reproductive cycle of bivalves is related to energy storage and utilization. Therefore, in this study, the year-round growth change and gonadal development of oysters were observed using histological analysis, and the biochemical composition changes were confirmed. The oysters used in this study are being nurtured in Gadeok-do, and 40 oysters were randomly sampled monthly from March 2021 to February 2022. Result of histological analysis of gonads, oysters were showed early development from December to February, late development from March and April, mature and ripe from May to July, spawned from August to October, and spent from November to December. Condition index values of oysters decreased in summer and autumn and increased again when entered the spent after spawning. The protein content of oysters was high in May, the maturity period, and the lipid content decreased during the spawning period. In addition, EPA and DHA, the major fatty acids of oysters, were low during the spawning period and high during the maturation period. As a result, this study suggested a close relationship between changes in oyster growth, biochemical composition, and the reproductive cycle.

9.
Arthritis Res Ther ; 25(1): 247, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38111075

ABSTRACT

BACKGROUND: Exogenously providing engineered Uox with enhanced half-life is one of the important urate-lowering treatments for gout. The potential of PAT101, a recombinant human albumin (rHA)-conjugated variant, was evaluated and compared as a novel gout treatment through various in vivo studies with PAT101 and competing drugs. METHODS: PAT101 was produced by site-specific conjugation of rHA and Aspergillus flavus Uox (AfUox-rHA) through clickable non-natural amino acid (frTet) and Inverse electron demand Diels-Alder (IEDDA) reaction. In vivo pharmacokinetics, efficacy tests and in vitro immunogenetic assay were performed after single or multiple doses of PAT101 and its competitors in BALB/c mice, transgenic (TG) mice, Sprague-Dawley (SD) rats, and non-human primate (NHP). RESULTS: The half-life of PAT101 in single-dose treated TG mice was more than doubled compared to pegloticase. In SD rats with 4 weeks of repeated administration of rasburicase, only 24% of Uox activity remained, whereas in PAT101, it was maintained by 86%. In the Uox KO model, the survival rate of PAT101 was comparable to that of pegloticase. In addition, human PBMC-based CD4+/CD8+ T-cell activation analysis demonstrated that PAT101 has a lower immune response compared to the original drug, rasburicase. CONCLUSION: All results suggest that this rHA-conjugated AfUox, PAT101, can be provided as a reliable source of Uox for gout treatment.


Subject(s)
Gout , Urate Oxidase , Mice , Animals , Rats , Humans , Urate Oxidase/therapeutic use , Leukocytes, Mononuclear/metabolism , Rats, Sprague-Dawley , Gout/drug therapy , Gout Suppressants/therapeutic use , Mice, Transgenic , Polyethylene Glycols/therapeutic use , Albumins/therapeutic use
10.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139137

ABSTRACT

Agrimonia pilosa Ledeb., an important medicinal herb in traditional East Asian medicine, is primarily used to treat abdominal pain, dysentery, and hemostasis. There are ten other reported species of Agrimonia plants, including Agrimonia coreana Nakai-a naturally growing species in South Korea-and Agrimonia eupatoria Linn. Although recent studies have isolated numerous active constituents and investigated their effects, the medicinal utility of this herb is not yet fully explored. Through patch-clamp recording, a previous study reported that Agrimonia plant extracts inhibit the function of Ca2+ release-activated Ca2+ channels (CRACs). Herein, we aimed to identify and isolate the main compounds in A. coreana responsible for CRAC inhibition while assessing the anti-inflammatory effects mediated by this inhibition. We demonstrated for the first time that alphitolic acid isolated from A. coreana has a dose-dependent inhibitory effect on CRAC activity and, thus, an inhibitory effect on intracellular calcium increase. Furthermore, analysis of human CD4+ T cell proliferation via the carboxyfluorescein diacetate succinimidyl ester method revealed that alphitolic acid inhibited T cell proliferation in a concentration-dependent manner. Our findings provide a theoretical basis for the potential therapeutic use of alphitolic acid in the treatment of inflammatory diseases.


Subject(s)
Agrimonia , Humans , T-Lymphocytes , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology
11.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895975

ABSTRACT

We report a 4-year-old with Gorham-Stout disease (GSD) who was treated with a combination of bisphosphonate, sirolimus, and atenolol. A previously healthy 4-year-old girl presented with back pain after falling on her back 2 months prior. Thoracolumbar spine X-ray revealed diffuse compression spinal fractures in T9-L2. Magnetic resonance imaging (MRI) confirmed multiple compression fractures at T9-L5 and revealed a paraspinal mass along the T1-L1 level. Based on clinical, radiological, and histopathological findings, Gorham-Stout disease was diagnosed. Treatment with sirolimus (0.5 mg twice daily, 1.6 mg/m2) was initiated and intravenous bisphosphonate (pamidronate, 1 mg/kg for 3 days, total 3 mg/kg every 4 months) was added for back pain; she had immediate improvement in back pain. After 9 months with this treatment, she had a mild increase in paraspinal lymphangiomatosis and aggravation in T9-L5 compression fractures; atenolol was administered. The patient underwent 11 months of combination treatment with bisphosphonate, sirolimus, and atenolol, and MRI showed mild degree of reduction in the paraspinal lesions at L1-L5. The patient is currently in stable condition with no back pain or side effects. The triple combination treatment with bisphosphonate, sirolimus, and atenolol may be helpful in stabilizing the disease course of GSD.

12.
Antioxidants (Basel) ; 12(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37891872

ABSTRACT

Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.

13.
Microorganisms ; 11(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764153

ABSTRACT

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by Dabie bandavirus (SFTSV), is an emerging infectious disease first identified in China. Since its discovery, infections have spread throughout East Asian countries primarily through tick bites but also via transmission between animals and humans. The expanding range of ticks, the primary vectors for SFTSV, combined with migration patterns of tick-carrying birds, sets the stage for the global spread of this virus. SFTSV rapidly evolves due to continuous mutation and reassortment; currently, no approved vaccines or antiviral drugs are available. Thus, the threat this virus poses to global health is unmistakable. This review consolidates the most recent research on SFTSV, including its molecular characteristics, transmission pathways through ticks and other animals, as well as the progress in antiviral drug and vaccine development, encompassing animal models and clinical trials.

14.
FEBS Open Bio ; 13(11): 2147-2156, 2023 11.
Article in English | MEDLINE | ID: mdl-37730921

ABSTRACT

(-)-Epigallocatechin-3-O-gallate (EGCG) is one of the major components of green tea polyphenol. Previous studies have shown that EGCG induces cancer-specific cell death in vitro and in vivo without causing severe side effects. However, the anti-cancer effect of EGCG alone is limited. 5,7-dimethoxyflavone (5,7-DMF), one of the principal functional components of black ginger (Kaempferia parviflora), also exerts anti-cancer effects. Here, we show that 5,7-DMF synergistically enhances the anti-cancer effect of EGCG in multiple myeloma cells by potentiating EGCG-induced intracellular cyclic guanosine monophosphate (cGMP) production. Moreover, the combination of EGCG and 5,7-DMF induces apoptotic cell death in multiple myeloma cells, and this is accompanied by activation of the cGMP/acid sphingomyelinase (ASM)/cleaved caspase-3 pathway. In conclusion, we have shown that 5,7-DMF enhances the anti-cancer effect of EGCG by upregulating cGMP in multiple myeloma cells.


Subject(s)
Catechin , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Cell Line, Tumor , Apoptosis , Catechin/pharmacology
15.
Drugs R D ; 23(4): 363-375, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37606749

ABSTRACT

INTRODUCTION: SB12 is a biosimilar to eculizumab reference product [SolirisTM (Soliris is a trademark of Alexion Pharmaceuticals, Inc.)] that acts as a C5 complement protein inhibitor. The infusion stability of in-use (diluted) SB12 outside the conditions stated in the reference product's label is unknown. OBJECTIVE: The objective of this study was to assess the stability of SB12 after extended storage in conditions not claimed in the originator label. METHODS: Infusion stability was assessed in SB12 samples (diluted in 0.9% NaCl, 0.45% NaCl, and 5% dextrose, final concentration of 5 mg/mL per clinical trial protocol and the reference product's label) kept at 5 ± 3 °C for up to 3 months, then 30 ± 2 °C/65 ± 5% relative humidity (RH) for 72 h. The product was stored in different containers [polyolefin (PO) bags, glass bottles and syringes], and the protocol followed International Conference on Harmonisation (ICH) and European Medicines Agency (EMA) requirements for stability evaluation of biological products. Stability was evaluated using complementary assays, including pH, protein concentration (A280), purity (size exclusion-high-performance liquid chromatography, capillary electrophoresis-sodium dodecyl sulfate, and imaged capillary isoelectric focusing), biological activity (C5 binding and inhibition), and safety (subvisible particles). RESULTS: Except for charge variants in SB12 diluted in 5% dextrose, all results met the stability acceptance criteria. There were no major changes in terms of physicochemical stability, biological activity, and subvisible particles. CONCLUSIONS: The infusion stability of SB12 after extended storage (5 ± 3 °C for up to 3 months, then 30 ± 2 °C/65 ± 5% RH for 72 h) was demonstrated for longer periods and at higher temperatures than what is stated in the EU and US labels of the reference product. The physicochemical properties, biological activity, and subvisible particles of in-use SB12 diluted in 0.9% NaCl and 0.45% NaCl were maintained under the described conditions and for all tested containers. However, instability was observed for the diluted SB12 in 5% dextrose. These results may reduce the workload of clinical staff and minimize drug waste from treatment delays without any loss in product quality and biological activity.


Subject(s)
Biosimilar Pharmaceuticals , Saline Solution , Humans , Sodium Chloride , Biosimilar Pharmaceuticals/chemistry , Glucose , Drug Stability , Drug Packaging , Chromatography, High Pressure Liquid
16.
Plant Physiol ; 193(1): 661-676, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37348867

ABSTRACT

Plant cells can reprogram their fate. The combinatorial actions of auxin and cytokinin dedifferentiate somatic cells to regenerate organs, which can develop into individual plants. As transgenic plants can be generated from genetically modified somatic cells through these processes, cell fate transition is an unavoidable step in crop genetic engineering. However, regeneration capacity closely depends on the genotype, and the molecular events underlying these variances remain elusive. In the present study, we demonstrated that WUSCHEL (WUS)-a homeodomain transcription factor-determines regeneration capacity in different potato (Solanum tuberosum) genotypes. Comparative analysis of shoot regeneration efficiency and expression of genes related to cell fate transition revealed that WUS expression coincided with regeneration rate in different potato genotypes. Moreover, in a high-efficiency genotype, WUS silencing suppressed shoot regeneration. Meanwhile, in a low-efficiency genotype, regeneration could be enhanced through the supplementation of a different type of cytokinin that promoted WUS expression. Computational modeling of cytokinin receptor-ligand interactions suggested that the docking pose of cytokinins mediated by hydrogen bonding with the core residues may be pivotal for WUS expression and shoot regeneration in potatoes. Furthermore, our whole-genome sequencing analysis revealed core sequence variations in the WUS promoters that differentiate low- and high-efficiency genotypes. The present study revealed that cytokinin responses, particularly WUS expression, determine shoot regeneration efficiency in different potato genotypes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Homeodomain Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Plant Shoots/metabolism , Cytokinins/metabolism , Genotype , Regeneration/genetics , Gene Expression Regulation, Plant , Meristem/genetics
18.
Retina ; 43(7): e45-e46, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37071920
19.
Curr Issues Mol Biol ; 45(3): 2284-2295, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36975517

ABSTRACT

Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera exhibited strong anti-influenza activity, with 50% inhibitory concentration values of 13.6 and 18.3 µM against H1N1, 12.8 and 10.8 µM against H9N2, and 29.2 µM (only compound 2) against H3N2 in the post-treatment assay, respectively. During the viral replication stages, the two compounds demonstrated stronger inhibition of viral RNA and protein in the late stages (12-18 h) than in the early stages (3-6 h). Moreover, both compounds inhibited PI3K-Akt signaling, which participates in viral replication during the later stages of infection. The ERK signaling pathway is also related to viral replication and was substantially inhibited by the two compounds. In particular, the inhibition of PI3K-Akt signaling by these compounds inhibited viral replication by sabotaging influenza ribonucleoprotein nucleus-to-cytoplasm export. These data indicate that compounds 1 and 2 could potentially reduce viral RNA and viral protein levels by inhibiting the PI3K-Akt signaling pathway. Our results suggest that abietane diterpenoids isolated from T. nucifera may be potent antiviral candidates for new influenza therapies.

20.
Phys Med Biol ; 68(9)2023 04 25.
Article in English | MEDLINE | ID: mdl-36990097

ABSTRACT

Objective. The purpose of this study is to assess its human images and its unique capabilities such as the 'on demand' higher spatial resolution and multi-spectral imaging of photon-counting-detector (PCD)-CT.Approach. In this study, the FDA 510(k) cleared mobile PCD-CT (OmniTom Elite) was used. To this end, we imaged internationally certified CT phantoms and a human cadaver head to evaluate the feasibility of high resolution (HR) and multi-energy imaging. We also demonstrate the performance of PCD-CT via first-in-human imaging by scanning three human volunteers.Main results. At the 5 mm slice thickness, routinely used in diagnostic head CT, the first human PCD-CT images were diagnostically equivalent to the EID-CT scanner. The HR acquisition mode of PCD-CT achieved a resolution of 11 line-pairs (lp)/cm as compared to 7 lp cm-1using the same kernel (posterior fossa-kernel) in the standard acquisition mode of EID-CT. For the quantitative multi-energy CT performance, the measured CT numbers in virtual mono-energetic images (VMI) of iodine inserts in the Gammex Multi-Energy CT phantom (model 1492, Sun Nuclear Corporation, USA) matched the manufacturer reference values with mean percent error of 3.25%. Multi-energy decomposition with PCD-CT demonstrated the separation and quantification of iodine, calcium, and water.Significance. PCD-CT can achieve multi-resolution acquisition modes without physically changing the CT detector. It can provide superior spatial resolution compared with the standard acquisition mode the conventional mobile EID-CT. Quantitative spectral capability of PCD-CT can provide accurate, simultaneous multi-energy images for material decomposition and VMI generation using a single exposure.


Subject(s)
Iodine , Photons , Humans , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Head , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...